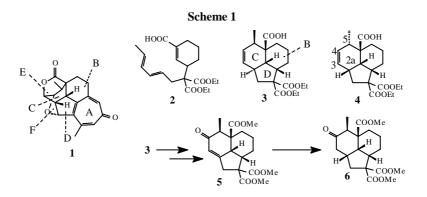
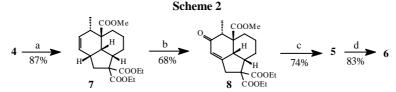
Studies on the Total Synthesis of Hainanolide (VI)-The First Access to the Lactone Functionality


Xiao Ming YU, Shi Zhi CHEN, Liang HUANG*

Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050

Abstract: C_{2a} - β -H ketone **6** was synthesized from the *exo*-IMDA-additive **4** with the aid of singlet oxygen, and ring E of hainanolide was assembled *via* kinetic enol ether of **6**.


Keyword: Hainanolide, exo-IMDA-additive, 1,4-lactone.

The intramolecular Diels-Alder reaction (IMDA) stands as the fundamental strategy in our total synthesis of hainanolide **1**, to assemble the tricyclic skeleton, ring B, C and D, as it was reported ¹. Cyclization of triene **2** afforded a mixture of *endo*-IMDA-additive **3** and *exo*-IMDA-additive **4**, the ratio of which varied with reaction conditions. Yet neither **3**, with the C_{2a} hydrogen at *a* position, nor **4**, with the C₅ methyl at *a* position, fits the configuration of that in the natural product. The stereochemistry of C_{2a}- *a*-H of *endo*-IMDA-additive **3** was successfully revised through six steps, as it was reported in our previous paper ². The *a*, β -unsaturated ketone **5** served a key intermediate in the process (**Scheme 1**).

Our recent study ³ on the ene-like mode reactivity of ${}^{1}O_{2}$ towards *exo*-IMDA-additive **4** suggested an effective procedure to obtain this compound, in convergence with the established approach. Furthermore, with **6** in hand, the introduction of a C₃ hydroxyl at the β position and the further access to the lactone

functionality, *e. g.* ring E of hainanolid, could be foreseeable, if a regio-specific enolization at C_3 of **6** could be achieved. The corresponding **scheme 2** and **scheme 3** were attempted and successful results have been obtained.

a) CH2N2, Et2O; b) O2, Ac2O, Py, TPP, hv; c) NaOMe, MeOH; d) H2, Pd-C (10%), EtOAc.

Following **Scheme 2**, compound **4** was methylated and converted into α , β -unsaturated ketone **8**⁴. When compound **8** was treated with excessive sodium methoxide, epimerization of the methyl group at C_{5 α} to C_{5 β} took place to give **5**, as the quartet peak at δ 2.69 in the ¹HNMR spectrum of **8** was found instead δ 2.49 in that of compound **5**. Hydrogenation of **5** gave the known ketone **6**, as it was reported ³.

a) LDA, Me₃SiCl, THF, -78°C-r. t.; b) m-CPBA, hexane; c) n-Bu₄N⁺F⁻, THF, H₂O; d) K₂CO₃, MeOH.

For formation of ring E (Scheme 3), ketone 6 was kinetically enolized and the enolate trapped with chlorotrimethylsilane ⁵, and then exposed to m-CPBA ⁶ without purification. After subsequent desilylation, the expected ketone 9 with C₃ hydroxyl at β position was isolated in a total yield of 51%. Under basic condition, 1,4-lactonization of ketone 9 took place to form ring E and 10 was isolated in *c.a.* 40% yield. The structure of 10 was supported by ¹HNMR, MS and UV.

The above study constituted the first access to the 1,4-lactone, thus a four-ring skeleton of the target molecule was constructed. In addition, both the *endo-* and *exo-*IMDA-additive could be employed as intermediates in our total synthesis of hainanolide.

References

- 1. L. Y. Zhang, W. Q. Yang, S. Z. Chen, L. Huang, Chin. Chem. Lett., 1997, 8 (1), 15.
- 2. W. Q. Yang, X. M. Yu, S. Z. Chen, L. Huang, *ibid.*, 1997, 8 (12), 1043.
- 3. X. M. Yu, L. Y. Zhang, S. Z. Chen, L. Huang, ibid., 1999, 10 (8), 657.
- 4. E. D. Mihelich, D. J. Eickhoff, J. Org. Chem., 1983, 48, 4135.
- 5. I. Fleming, I. Paterson, Synthesis, 1979, 736.
- 6. G. M. Rubottom, M. A. Vazquez and D. R. Pelegrina, Tetr. Lett., 1974, 4319.

Received 3 November 1999