Studies on the Total Synthesis of Hainanolide (VI)-The First Access to the Lactone Functionality

Xiao Ming YU, Shi Zhi CHEN, Liang HUANG*
Institute of Materia Medica, Chinese Academy of Medical Sciences \& Peking Union Medical
College, No. 1 Xian Nong Tan Street, Beijing 100050

Abstract

C}_{2 \mathrm{a}}-\beta-\mathrm{H}\) ketone $\mathbf{6}$ was synthesized from the exo-IMDA-additive $\mathbf{4}$ with the aid of singlet oxygen, and ring E of hainanolide was assembled via kinetic enol ether of 6 .

Keyword: Hainanolide, exo-IMDA-additive, 1,4-lactone.

The intramolecular Diels-Alder reaction (IMDA) stands as the fundamental strategy in our total synthesis of hainanolide 1, to assemble the tricyclic skeleton, ring B, C and D, as it was reported ${ }^{1}$. Cyclization of triene 2 afforded a mixture of endo-IMDA-additive 3 and exo-IMDA-additive 4, the ratio of which varied with reaction conditions. Yet neither $\mathbf{3}$, with the $\mathrm{C}_{2 \mathrm{a}}$ hydrogen at a position, nor $\mathbf{4}$, with the C_{5} methyl at a position, fits the configuration of that in the natural product. The stereochemistry of $\mathrm{C}_{2 \mathrm{a}^{-}} \alpha-\mathrm{H}$ of endo-IMDA-additive $\mathbf{3}$ was successfully revised through six steps, as it was reported in our previous paper ${ }^{2}$. The α, β-unsaturated ketone 5 served a key intermediate in the process (Scheme 1).

Our recent study ${ }^{3}$ on the ene-like mode reactivity of ${ }^{1} \mathrm{O}_{2}$ towards exo-IMDA-additive 4 suggested an effective procedure to obtain this compound, in convergence with the established approach. Furthermore, with 6 in hand, the introduction of a C_{3} hydroxyl at the β position and the further access to the lactone
functionality, e. g. ring E of hainanolid, could be foreseeable, if a regio-specific enolization at C_{3} of $\mathbf{6}$ could be achieved. The corresponding scheme 2 and scheme 3 were attempted and successful results have been obtained.

Following Scheme 2, compound 4 was methylated and converted into α, β -unsaturated ketone $\mathbf{8}^{4}$. When compound $\mathbf{8}$ was treated with excessive sodium methoxide, epimerization of the methyl group at $\mathrm{C}_{5}{ }^{a}$ to $\mathrm{C}_{5 \beta}$ took place to give 5 , as the quartet peak at $\delta 2.69$ in the ${ }^{1} \mathrm{HNMR}$ spectrum of $\mathbf{8}$ was found instead $\delta 2.49$ in that of compound 5. Hydrogenation of $\mathbf{5}$ gave the known ketone $\mathbf{6}$, as it was reported ${ }^{3}$.

Scheme 3

a) LDA, $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{THF},-78^{\circ} \mathrm{C}$-r. t.; b) m-CPBA, hexane; c) $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{F}^{-}$, THF, $\mathrm{H}_{2} \mathrm{O} ;$ d) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH .

For formation of ring E (Scheme 3), ketone 6 was kinetically enolized and the enolate trapped with chlorotrimethylsilane ${ }^{5}$, and then exposed to $\mathrm{m}^{-C P B A}{ }^{6}$ without purification. After subsequent desilylation, the expected ketone 9 with C_{3} hydroxyl at β position was isolated in a total yield of 51%. Under basic condition, 1,4-lactonization of ketone $\mathbf{9}$ took place to form ring E and $\mathbf{1 0}$ was isolated in c.a. 40% yield. The structure of $\mathbf{1 0}$ was supported by ${ }^{1} \mathrm{HNMR}, \mathrm{MS}$ and UV.

The above study constituted the first access to the 1,4-lactone, thus a four-ring skeleton of the target molecule was constructed. In addition, both the endo- and exo-IMDA-additive could be employed as intermediates in our total synthesis of hainanolide.

References

1. L. Y. Zhang, W. Q. Yang, S. Z. Chen, L. Huang, Chin. Chem. Lett., 1997, 8 (1), 15.
2. W. Q. Yang, X. M. Yu, S. Z. Chen, L. Huang, ibid., 1997, 8 (12), 1043.
3. X. M. Yu, L. Y. Zhang, S. Z. Chen, L. Huang, ibid., 1999, 10 (8), 657.
4. E. D. Mihelich, D. J. Eickhoff, J. Org. Chem., 1983, 48, 4135.
5. I. Fleming, I. Paterson, Synthesis, 1979, 736.
6. G. M. Rubottom, M. A. Vazquez and D. R. Pelegrina, Tetr. Lett., 1974, 4319.

Received 3 November 1999

